
Green Hydrogen

A new way for **Rio Grande** do Sul.

2023

Rio Grande do Sul, the global hub of Green Hydrogen

EDUARDO LEITE

Governor of Rio Grande do Sul

It is the government's duty to promote the development, which means going beyond supporting traditional sectors of the economy. It requires, to the same extent, an attentive and strategic look at new businesses, that can not only be added to the existing ones but can also enhance them. It is in this context, that the policy of setting up a Green Hydrogen production hub in Rio Grande do Sul fits in.

Among the priorities of the new administration, we list the incentive to a sustainable economic growth. We believe that by generating wealth and income, improving competitiveness, we will even consolidate a new moment for the public management in Rio Grande do Sul. It does not mean growing in any direction, but growing based on a strategic guideline. Therefore, our commitment is more than growing only, it is growing with innovation, energy transition and sustainability.

The Green Hydrogen project addresses the three guidelines simultaneously. At the same time, the Green Hydrogen puts Rio Grande do Sul on the global map of an innovative and promising product, reinforces our commitments with the energy transition and deepens the idea that we seek to reconcile development and sustainability. In a certain way, we can say that the project is a perfect symbol of what we are thinking for our state.

This booklet aims to present the state's advantages to become a competitive hub for Green Hydrogen. We have abundant water and sources (sun and wind) for the production of renewable energies. We also have one of the largest ports in Brazil (Rio Grande), that can be converted into a production distribution point for any place in the world. Besides exporting the produced hydrogen, we can also use it to produce ammonia, an essential fertilizer for the agricultural production in Rio Grande do Sul, with obvious productivity gains.

We want to show to Brazil and to the world that we have all the logistical and competitive conditions to establish ourselves as a reference in this field. For this purpose, we are adopting legal measures, studying the market deeply and technically and strengthening contacts with international investors and manufacturers. With the seen perspectives, we are facing a revolution, that will certainly be a milestone for the future of our state.

Rio Grande do Sul

11,4 MILLION

More than 5% of the Brazilian population.

CAPITAL PORTO ALEGRE

Almost 4 million inhabitants, including the Metropolitan Region.

MULTICULTURAL IMMIGRATION

German, italian, polish, portuguese and many other.

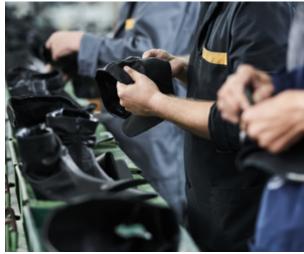
MAIN SECTORS OF ECONOMIC ACTIVITY IN RS

Services – 67,3% Industry – 23,4% Agribusiness – 9,3%

GDP Brazil	BRL 8,7 tri
GDP per capita Brazil	BRL 40.688,00
GDP RS	BRL 582,6 bi
GDP per capita RS	BRL 50.840,40

Economic sectors highlights

DIVERSIFIED INDUSTRY


IST INDUSTRIAL PARK IN THE COUNTRY FOR:

- Biodiesel
- Tractors, agricultural machinery and equipment
- Road implements and bus bodies
- Leather and footwear
- Wines
- Tobacco

2ND INDUSTRIAL PARK IN THE COUNTRY FOR:

- Automation
- Computer programming
- Metallurgical products
- Machines and equipment
- Furniture
- Animal and vegetable fats and oils

3RD INDUSTRIAL PARK IN THE COUNTRY FOR:

Plastic and rubber products

4TH INDUSTRIAL PARK IN THE COUNTRY FOR:

- Wind power generation
- Light vehicles
- Chemicals
- Vessels, aircrafts, military vehicles and other transport equipment

Internationalized economy

2^{nd}

State in exports of manufactured products

3rd

Most promising state in Brazil for investments

4th

State in exports

U\$ 8,7 billion

U\$ 16,5 billion 8.95% of all exports from Brazil

Environmental pioneering


Average time for analysis of environmental licenses **reduced by 50%**

2018	256 days on average
2022	128 days on average

AS A RESULT OF

- People management intelligence
- System improvements
- Acquisition of equipment
- Update of the environmental law (Law 15.434), that authorized new forms of licensing
- Implementation of the Environmental License by Commitment for 49 activities with lower polluting potential

RS and climate actions

COP 26

Commitment to neutralize CO_2 emissions by 2050.

JOINING TO RACE TO ZERO AND RACE TO RESILIENCE

Neutralizing greenhouse gas emissions by 2050 and the climate resilience.

COP 27

Cooperation Agreement between RS and CDP (Carbon Disclosure Project). Protocol of Intentions of Codesur member states.

JOINING TO UNDER2COALITION

Coalition of subnational governments to achieve the mitigation of greenhouse gas (GHG) emissions.

Main sources of H₂

			Low Carbon H ₂		
	GRAY H ₂	BLUE H ₂	TURQUOISE H ₂	GREEN H ₂	
Feedstock	Natural gas	Natural gas	Biomass or biofuels	Water	
Production Process	Split natural gas ¹ into H_2 and CO_2	Similar to Gray, but with CO ₂ sequestration and/or storage	Catalytic reforming ² , gasification ³ or anaerobic digestion ⁴ with or without CCUS (Carbon Capture, Use and Storage)	Splitting water into H_2 and O_2 in an electrolyser powered by renewable energy	
CO ₂ emissions CO ₂ Kg/H ₂ Kg produced	~10	~1-3 (most $\rm CO_2$ stored)	n.a.	~0 (Assuming a mix of green electricity, typically solar and wind)	

Focus of discussion

 Process: Sulfur Removal, Syngas Production via Steam Methane Reforming (SMR) or Automatic Thermal Reforming (ATR), CO Shift Reaction, Purification. The latter is expected to offer greater efficiency in combination with CCS. Furthermore, gray hydrogen can also be produced from coal gasification;
 Also called hydrogen reforming or catalytic oxidation, it is a method of producing hydrogen from hydrocarbons;

3. Processes that transform solid or liquid fuels into a fuel mixture of gases generating CO and H_a;

4.Degradation of organic compounds without simpler substances (eg: CH4 and CO₂), using anaerobic microorganisms; Source: EPE

What is GH₂

Green Hydrogen (GH_2) consists of hydrogen generated by renewable energy, being an energy source of wide applicability with significantly lower carbon emissions than gray H_2 or other fossil fuels.

Study guide for the elaboration of the GH₂ development plan in RS

STEP 1 Preparatory activities	STEP 2 Understanding the starting point and potential for Green Hydrogen in RS	STEP 3 Design of potential action by the government of RS
F	10 weeks	
4 weeks	6 weeks	4 weeks
 Understanding and evaluating available research and data. Relevant data collection. Outline and launch of complementary research. Definition of main companies and stakeholders to be interviewed. Interviews with executives and market experts. Kick-off presentation that summarizes the scope, methodology and preliminary results of the preparatory steps (0.1 to 0.5). 	 2 Report detailing the Government's aspirations and boundary conditions for the Green H₂ market. 3 Market research report with objectives and challenges of the main stakeholders of the GH₂ chain in RS. 3 Benchmark of public policies, characterization of the distinctive aspects of the State of RS in relation to GH₂ and identification of socioeconomic and technological challenges. 4 Mapping of the starting point and potential perspective of renewable energy and gas markets in the State of RS. 6 Estimate of production cost and assessment of competitiveness of GH₂ in RS in 2022 and 2040. 7 Estimate of the internal demand for GH₂, considering possibilities for substituting energy sources. (3) Estimate of future external GH₂ demand in the State of RS, including landed cost analysis. 	 Based on government input, preparation of a detailed Plan for the economic development of the GH₂ sector in RS, including the structuring of guidelines and also the definition of the main insights for the most characteristic companies and sectors of the State for the advancement of H (focus on key sectors, such as the transformation industry, metalmechanics, agriculture, utilities, transport and logistics). Assessment of the economic impact, through the impact on GDP and job generation. Assessment of the environmental impact of the emission of greenhouse gases and other qualitative benefits resulting from the development of the sector. Implementation roadmap, including results to be carried ou and deadlines.

Applicability of GH₂ in Brazil

- \blacksquare H₂ for steel
- \blacksquare H₂ for refinery
- Ammonia for fertilizers and chemicals

- \blacksquare H₂ for passenger cars
- Road freight (medium weight and heavy duty trucks)
- H₂ for long distance rail freight
- Mining trucks
- Ammonia or methanol for bulk carriers /container ships

development plan of the Green Hydrogen market in RS,

grouping and synthesizing the methodology and the main results of products 1 to 12.

(13)

- H₂ for medium and high grade heating
- H_2 for H_2 gas mixture
- \blacksquare H₂ for combined cycleturbine

GH₂ Context in Brazil

- The global moment of decarbonization provides a favorable scenario for Hydrogen, with a potential application growth of more than 10 times
- GH₂ in Brazil can be competitive in ecosystems due to the country's characteristics

The GH₂ chain should become a sector with revenues between USD 15 billion and USD 20 billion in 2040 in Brazil, with approximately 70% of the volume destined for the domestic market 3

- Several projects were announced in Brazil, especially with an initial focus on exports
- States have significant potential as producers and/or consumers of GH₂

GH₂ Context in RS

The H_2V opportunity in RS dialogues with the global moment and the commitment to decarbonization and the development potential of the local chains

The aspiration of government representatives is to become a leader in the country in GH₂, given the high potential of renewable energies and the need for a sustainable agenda in the state

2

- The global moment of decarbonization provides a favorable scenario for the Hydrogen, with a potential application growth of more than 10 times and support for the 1.5°C target
- The GH₂ supports the ambition to decarbonize the economy, which was assumed by Rio Grande do Sul when committing to the Race to Zero

- Rio Grande do Sul has a potential as a producer (solar and wind potential), as a consumer (due to manufacturing industries and consumption of fertilizers1) and has a logistic infrastructure
- Given the high wind and solar
 capacity factors, estimated GH₂ costs in RS are competitive with other regions of the country, ranging from 2.1 to 3.4 USD/kg

GREEN HYDROGEN

Opportunities for the southern region

DECARBONIZATION AS A GOAL

IMPROVEMENT OF THE USE OF NATURAL RESOURCES

DECREASE OF THE ENVIRONMENTAL IMPACTS ON ENERGY GENERATION AND USE

GENERATION OF JOBS, INCOME AND IMPROVEMENT IN THE QUALITY OF LIFE

INCREASE IN ENERGY SECURITY

REGIONAL INTEGRATED DEVELOPMENT

Use of GH₂ for decarbonization in RS

Reduce the demand for primary resources by increasing the circularity of products, e.g. reuse, recycle

Replacing fossil fuel with renewable electricity, e.g. from wind and solar farms

Decrease the energy intensity of equipments or infrastructures, e.g. building insulation or heat recovery improvements

Replace carbon-intensive feedstock or fuel with carbon-neutral H₂, e.g. in ammonia production

Replacing feedstock or fuel with sustainably produced biomass or biogas, e.g. bio-based feedstock in the chemical production

STORAGE OR CARBON USE (CCS/U)

Using technology to capture the CO₉ emitted in chemical processes

Applying GH_2 in innovative processes, e.g. electrochemical production processes

Switching to non-fossil fuel feedstock, e.g. cement industry

LAND USE OR CHANGES IN AGRICULTURAL PRACTICES

Altering land use or agricultural practices to reduce net emissions, e.g. through reforestation (for negative emissions) or changing livestock feed

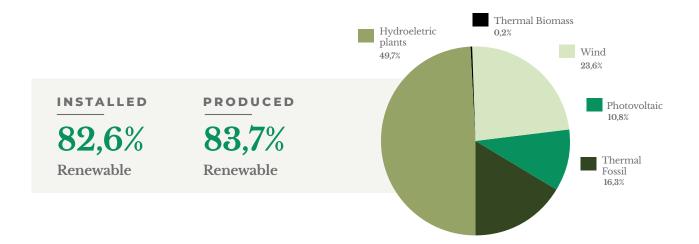
What RS offers

NATURAL RESOURCES

- Natural resources in abundance (energy generation carbon free)
- Sea coast and lagoons
- 82% of the electric energy matrix is renewable

INFRASTRUCTURE

- Logistic and production base
- Transmission lines
- Port structure
- Waterways
- Roadways
- Railways
- Universities and science and technology centers



MARKET

- Internal consumption
- External market
- Added value in the local productive sector
- Tax incentive (Fundopem/RS)

Potentialities and structure

	INSTALLE	D POWER ¹	Energy Generated ²	
TYPE OF PLANT	MW	%	GWH	%
Hydroeletric plants	4.632	44	11.701	49.7
UHE PCH CGH	3.865 665 102	36,7 6,3 1,0	11.701	49.7
Thermoeletric plants Biomass	2.211 380	21 3,6	3.870 3.870	16,4 0,2
Fossil ^ı Nuclear	1.831	- 17,4	3.834 -	-
Wind	1.836	17,4	5.424	23,7
Photovoltaic ³	1.859	17,6	2.562	10,9
Total	10.538	100	23.557	100

Raw data source: ANEEL on 10-01-2022 and ONS.

Note: CGH up to 5MW; PCH between 5 and 30MW; UHE greater than 30MW

1. Considers half of the border plants on the Pelotas and Uruguay rivers;

2. Considers the generation given by the ONS from 10/01/2021 to 09/30/2022;

3. Considers 1,577MW from GD, on 06/22 plus 9.64MW registered with ANEEL;

Average Annual Import of Electricity, by RS, from the National Interconnected System (SIN) 2015-2020: 30%

BRL 6,5 bi

3.200 km

capacity

The expansion of the transmission system makes it possible to install GH_2 projects in regions with greater wind and solar potential.

Potential for wind and solar generation favors GH₂ projects in RS

ANNUAL ON-SHORE WIND POTENTIAL

Wind speed \geq to 7 m/s

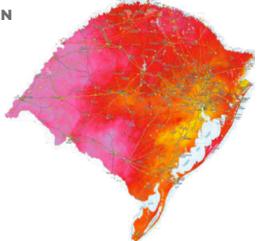
Theoretical total installable capacity of approximately 103 GW with 17% already in operation or planned

Capacity factor (%): 47 Wind speed (m/s)

4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

eration

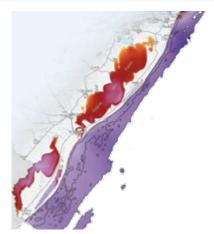
ANNUAL TOTAL IRRADIATION ON THE INCLINED PLANE AT 20°


The RS has a theoretical total solar installable capacity of approximately 100 GW

Capacity factor (%): 15-17

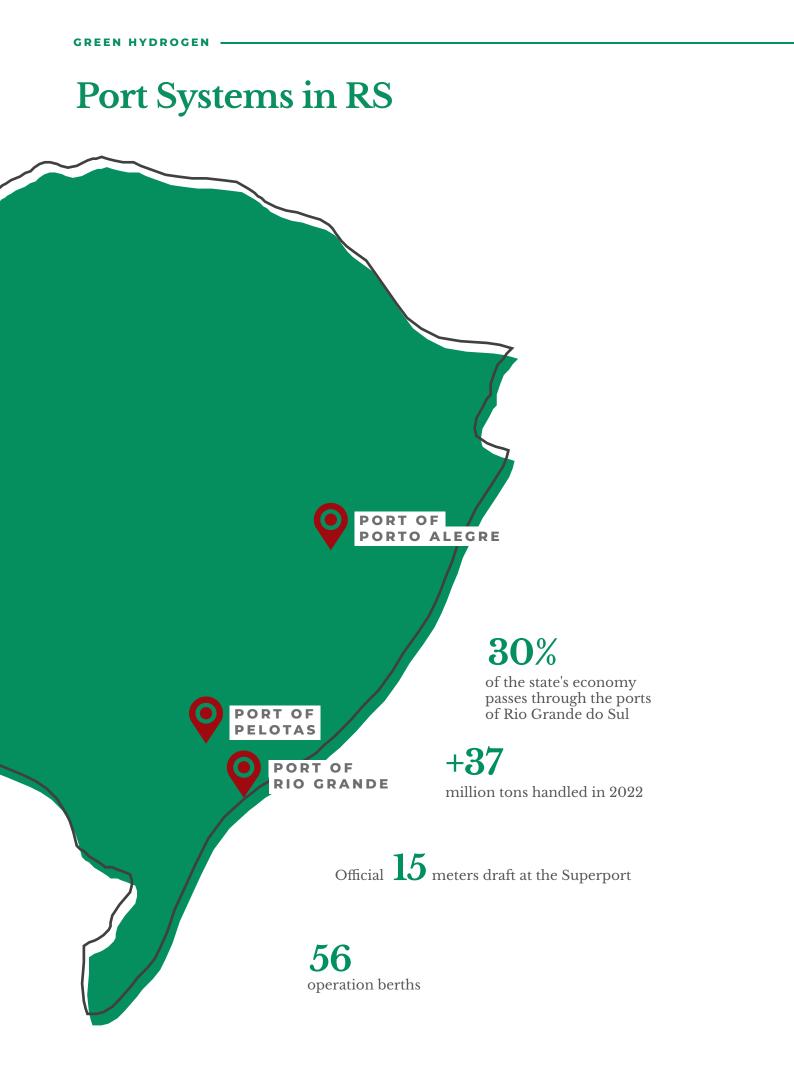
Average total irradiation Sum of the day - kWh/m2/day

2,5 3 3,5 4 4,5 5 5,5 6 6,5 7



AVERAGE THEORETICAL OFF-SHORE WIND CAPACITY FACTOR BY REGION IN RS

The offshore wind potential in the Patos, Mirim and Mangueira lagoons and on the coast of the state is approximately 114 GW


Capacity factor (%): 43-53 Wind speed (m/s)

4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

Source: Wind Atlas of Rio Grande do Sul (Government of Rio Grande do Sul, 2014)

17

A port for the GH₂

LOCAL ADVANTAGES

Rio Grande (industry-port)

- Largest industrial district in RS
 - □ 2,580 hectares of total area
- Back areas available
- Strategic and privileged position
- Synergy with production chains

- Logistic advantages
 - □ Production flow
 - □ Receipt of raw materials
- Handling more than 37 million tons in 2022

GH₂ potential in economic sectors in RS

COMP. OF THE INDUSTRIAL TRANSFORMATION VALUE OF RS, 2020 (%)

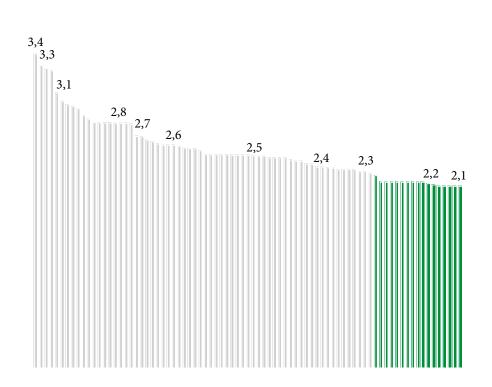
	Food products	24	
Methanol e ammonia	Chemical products	10	
	Machines and equipment	9	
	Metal production	7	
	Motor vehicles, trailers and bus bodies	6	
Methanol and refineries	Coke, petroleum and biofuels byproducts	6	
	Preparation of leather and leather goods	5	
	Rubber and plastic material products	4	
	Pulp, paper and paper products	4	
Methanol	Furniture	4	
Ammonia	Tobacco products	3	
	Beverages	3	
	Products of non-metallic minerals	3	
	Other products	2	
	Metallurgy	2	
	Electric machines, appliances and materials	1	
Methanol	Wood products and textiles	2	
	Computer equipment, electronic and optical products	1	
	Manufacture of clothing and accessories	1	
	Maint., repair. and installation of machinery and equipment	1	

Source: Annual Industrial Survey (PIA-IBGE). Document intended to provide insights based on available information and not advice, opinions or recommendations on public policy.

KEY INDUSTRY APPLICATION

Some GH₂ applications can benefit important sectors of the RS economy, including:

- Petroleum products, mostly produced in refineries, and biodiesel, with the need to use methanol, represent 6% of the VTI.
- The production of chemical products, that represents 10% of the VTI, can be impacted both by the production of ammonia for fertilizers (which also has industrial uses) and methanol (with the production of formaldehyde). Ammonia for fertilizers still impacts the tobacco industry (3% of VTI) and methanol


impacts the wood products and furniture industry (6% of VTI).

 Other conventional, direct replacement uses of H₂

 similar to refining –
 include the hydrogenated vegetable oil (food), paper and cellulose (hydrogen peroxide) and glass industry, but the demand is limited.

GH₂ production cost in RS

LEVELIZED COST OF HYDROGEN (LCOH+S) IN 2030 ALL SETTINGS ANALYZED FOR RS, USD/K

MINIMUM LCOH+S FOR EACH CLUSTER BY PRODUCTION SCENARIOS, USD/KG

CLUSTER	ON-GRID	OFF-GRID	MIXED-GRID
01 São Francisco de Assis*	2,26	2,24	
02 Uruguaiana*	2,22	2,22	
03 Giruá*	2,22	2,24	
04 Vila Nova do Sul*	2,26	2,26	
05 Mostardas*	2,50	2,21	
06 Santa Vitória do Palmar*	2,17	2,15	
07 Cambará do Sul**	2,37	2,54	
07.1 Arroio do Sal**	2,19	2,56	
08 Dom Pedrito*	2,49	2,20	
09 Rio Grande**	2,49	2,18	2,09
10 Porto Alegre**	2,58	2,34	2,21

*: Cluster with Capacity Factor in the first quadrant

**: Cluster with Capacity Factor between the second and fourth quadrant

Most relevant GH₂ applications for RS

INDUSTRY FEEDSTOCK

CONVENTIONAL ROUTES

Refineries

Refap's Hydrogen Generating Unit has the capacity to produce 60 KTA of Gray H₂. Petroleum derivatives represent 5% of VTI.

LOW CARBON ROUTES

Ammonia for fertilizers

Nitrogen fertilizer imports totaled 620 kT in 2021 (exc. Urea). The value of imports corresponds to 0.8% of VTI.

Methanol

Methanol imports from RS amounted to 20 KT in 2021. Methanol is used in the biodiesel industry, representing 0.6% of VTI.

Steel

Although the steel industry accounts for 1% of the VTI, the non-integrated route in RS reduces the possibilities of H₂ application.

ENERGY CARRIER

TRANSPORT

H₂ for passenger cars

RS has 8% of the car fleet. Road energy consumption represents 45% of the state's total consumption.

Long distance rail freight

Rails could be decarbonised using hydrogen or electricity as a diesel substitute.

Air transport

Air energy consumption representsless than 1% of consumption in the air transport. RS does not have a national/ international air hub.

Road transport

Focus on trucks (85% of the heavy duty fleet). RS has 8% of the truck fleet. Road energy consumption represents 45% of the State's total consumption.

Sea transport

Porto de Rio Grande is the 5th busiest port in Brazil.

HEAT FOR INDUSTRY AND SERVICES

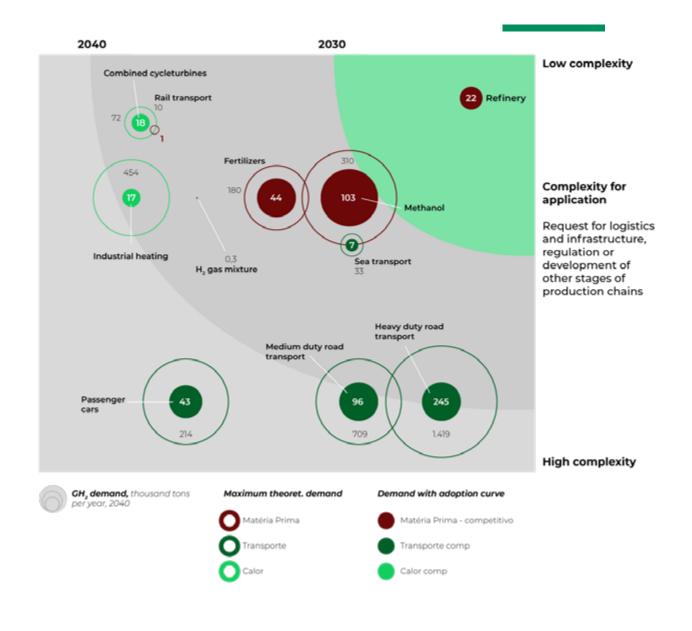
Medium and high degree heating

Natural gas, mineral coal and diesel for energy purposes add up to 800,000 TOE in the industry, representing 6% of state consumption.

Combined cycleturbine

Mineral coal and natural gas consumption add up to 1.7 MTOE in the energy transformation process. Restriction of natural gas prevents the complete use of thermoelectric plants.

Mix of H_2 gas


Hydrogen can be added to the natural gas network, increasing the overall supply and enabling a better supply-demand balance.

Demand and production potential in RS until 2040

Theoretical potential of 2.8 million tons of GH_2 distributed in several applications with dispersed complexity and competitiveness

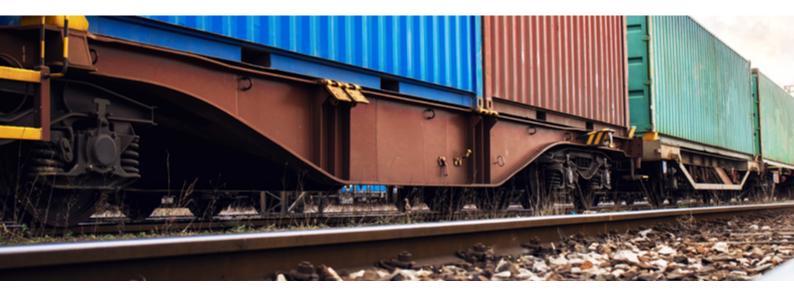
GH₂ **APPLICATION FEASIBILITY MATRIX**

 $\mathrm{GH}_{\scriptscriptstyle 2}$ solution cost break even year compared to traditional and low-carbon alternatives

The maximum demand for GH_2 could reach 2.8 million tons of GH_2 in 2040. However, the actual demand for GH_2 depends on the adoption rate and the dynamics of each market, projected to 0.8 million in 2040.

Two types of application can act as keys to the development of the GH₂ chain in the state:

- Applications with high volume, but more difficult to apply in the short term, such as road transport and industrial heating
- Niche applications with small volume but easy to use such as in refineries


Investments in downstream production chains and GH₂ logistics can reduce challenges and bottlenecks

Potential with adoption curve **APPLICATION** DEMAND IN RS, KTA, 2040 Complexity for GH_2 adoption 22 Refinery Need for additional CAPEX investment for ammonia plant 180 and nitrogen fertilizers. To reach the maximum potential, it is necessary to be competitive in other states of the centre-south Fertilizers Need for additional CAPEX investment for methanol plant. To reach the maximum potential, it is necessary to be competitive Methanol 313 in other states of Brazil Competition with BEV, especially for medium trucks. Logisticl 1.588 1.247 Road transport challenge of implementation in a distributed chain. Competition with BEV. Distributed chain implementation 171 214 Passenger cars logistic challenge. Rail transport 1 10 19 Sea transport 7 33 Low competitiveness of GH_2 compared to mineral coal and biogas Industrial heating 437 454 54 Combined cycleturbines 18 72 Low energy consumption of natural gas 0 Mixture of H_2 gas in homes and businesses

Maximum potential (100% adoption)

Benefits of GH₂ in RS

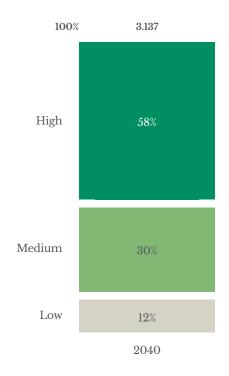
Adoption of low

Scenario	Adoption of low complexity applications	and <mark>medium</mark> complexity applications	medium and high complexity applications
Applications adopted in the scenario	Use in refineries, rail transport and cycleturbines	 » Use in refineries, road transport and cycleturbines » Use in fertilizers, methanol, industrial heating, sea transport, gas mixtures 	 » Use in refineries, road transport and cycleturbines » Use in fertilizers, methanol, industrial heating, sea transport, gas mixtures » Use in road transport and passenger cars
Cumulative estimates up to 2040	~ R\$ 3,7 bi (1% of the RS annual GDP of 2021)	~ R\$ 33,6 bi (6% of the RS annual GDP of 2021)	~ R\$ 62 bi (11% of the RS annual GDP of 2021)

Jobs

~2 M

~25 mil



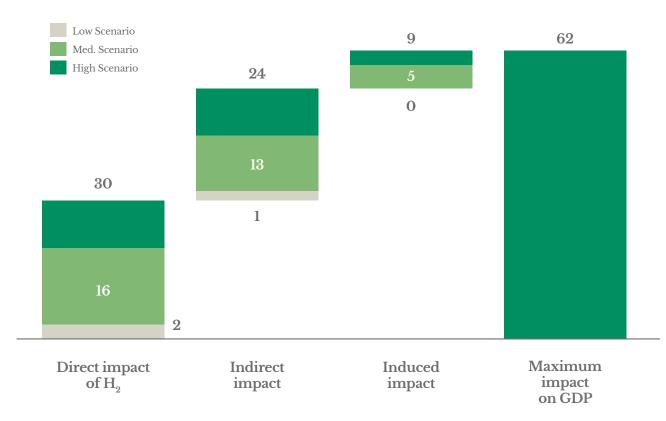
Adoption of low,

Note: Amounts at 2022 prices in reais without discount rate, considering average exchange rate for 2022 according to IPEA of USD/BRL of 5.1. Given the existence of factors linked to the dollar, exchange rate volatility can affect the size of long-term values Source: FIPE/DEE, OECD input/output tables, IBGE/SIDRA, CAGED

Expected demand for GH₂ in RS

ACCUMULATED DEMAND UNTIL 2040 BY ADOPTION COMPLEXITY (KTA, 2040)

APPLICATION	2025	2030	2040	FOSSIL SOLUTION PARITY YEAR	COMPLEXITY
Refinery	0	22	22	2026	Low
Methanol	0	0	103	2028	Med.
Road transport	0	21	341	2028	High
Passenger cars	0	5	43	2030	High
Sea transport	0	0	14	2034	Med.
Fertilizers	0	0	26	2035	Med.
Rail transport	0	0	1	2036	Low
Combined cycleturbines	0	6	18	2038	Low
Industrial heating	0	0	17	2038	Med.
H_2 gas mixture	0	0	0,3	2038	Med.


IN ADDITION TO THE ABOVE INTERNAL DEMAND ITEMS, THERE IS A POTENTIAL EXTERNAL DEMAND CAPTURE OF 0.5 - 0.9 MTA BY 2040

Benefits of GH₂ in RS

The maximum impact of GH₉ on GDP in RS by 2040 is BRL 62 billion

MAXIMUM CUMULATIVE IMPACT ON RS GDP UNTIL 2040

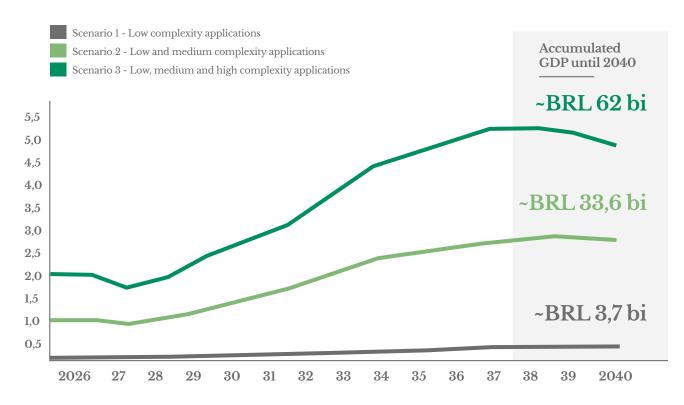
(in BRL billion with 2022 values)

Note: Amounts at 2022 prices in reais without discount rate, considering average exchange rate in 2022 according to IPea of USD/BRL of 5.1. Given the existence of factors linked to the dollar, exchange rate volatility can affect the size of long-term values

Direct impacts are the cost of Construction (e.g., investment in construction and equipment) and the expected change in revenue from expanded operations that add value to the economy. Initial costs with the import of equipment1 with inputs were removed from this amount.

Indirect contributions measure impacts on different supply chains from direct impacts. This impact reflects the effect on the supply chain of other production chains not directly involved with GH₂.

Economic impact caused by employees who from the chain spend their salaries on the economy, providing more income and creating more jobs. This impact is the most subject to variation in the long term given the incipience of the H₂ chain.


To calculate these impacts, the substitution and location effects were also considered, in which the first takes into account the increase in the contributions of H_2 and removes the added value of the fossil equivalents that H_2 replaced and the second adds a possible effect on the economy to produce locally and no longer import fertilizers and methanol,

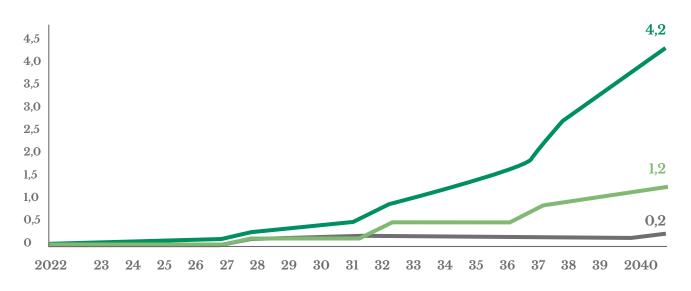
Increase in annual GDP according to GH₂ adoption scenarios in RS

5-year moving average, BRL billion.

MAXIMUM CUMULATIVE IMPACT ON RS GDP UNTIL 2040 (in BRL billion at 2022)

Note: Amounts at 2022 prices in reais without discount rate, considering average exchange rate for 2022 according to IPEA of USD/BRL of 5.1. Given the existence of factors linked to the dollar, exchange rate volatility can affect the size of long-term values. It was assumed that the H_2 projects would be built in 2026, 2029, 2030, 2033 and 2034 with 2 years of construction and the ammonia, methanol fertilizer plants would take 4 years and start construction in 2026, 2035, 2030. Source: FIPE/DEE, OECD input/output tables, IBGE.

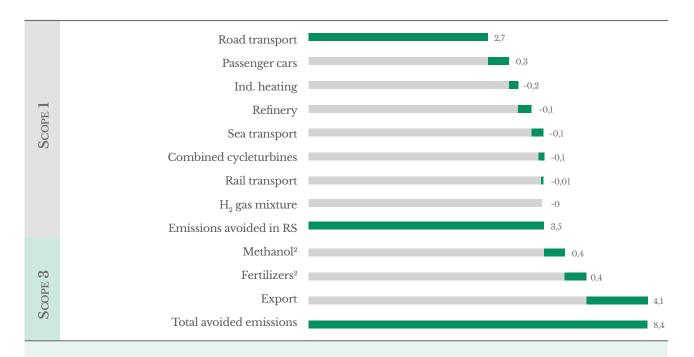
By 2040, RS could avoid 0.2-4.2 Mt of CO_2 per year, considering the three scenarios for the adoption of GH_2


CO2E EMISSIONS AVOIDED ACCORDING TO EACH GREEN HYDROGEN ADOPTION SCENARIO IN RS

MtCO₂e/year

Scenario 1 - Low complexity applications

Scenario 2 - Low and medium complexity applications


Scenario 3 - Low, medium and high complexity applications

Includes scope 3 (indirect emissions, which occur outside the state and would be replaced by local production) for fertilizers and methanol consumed in the state, does not consider exports. Source: Climate Observatory

How can GH₂ help to reduce carbon emissions in RS by 2040

Reduction of emissions in RS by application¹ - scenario³ 2040, MtCO₉e/year

~3,5 a 8,4

MtCO₂e/year in reducing emissions scope 11 and 3¹, by 2040

of total current scope 11 emissions from the state of RS³

~4%² a 9%³ ~17%⁴ a 38%⁵

of current Scope 11 emissions from sectors in RS where GH₂ is applicable⁶

1. Scope 1: emissions released as a direct result of operations within the state; Scope 3: indirect emissions that occur in the state's value chain; 2. Potential emission reduction of 3.5 MtCO, e in 2040 vs. total emissions of 84.3 MtCO, e RS in 2020 (according to the Climate Observatory using the GWP-AR5 methodology);

3. Considering RS contribution to total emission reductions (8.4 MtCO₂ e in scope 1 and 3) vs. the state's total emissions (84.3 MtCO₂ in scope 1); 4. Emission reduction potential of 3.5 and 8.4 MtCO₂e in 2040 vs. emissions of 20.2 MtCO₂e in sectors of RS where GH₂ is applicable;

5. Considering RS contribution to total emission reductions (8.4 MtCO₂e in scope 1 and 3) vs. emissions where GH₂ is applicable in the state (20.2 MtCO₂); 6.Applicable sectors include synthetic fertilizers in agriculture, burning fuel in road, air, rail and water transport, fuel production in refineries, industrial heating, use of fuel in agriculture, fuel consumption for industrial processes of cement, pig iron and steel

Source: Climate Observatory

Action plan

The main initiatives raised make up a macro action plan divided into three main moments

	HORIZON 1 (2022-2026)		HORIZON 2 AND 3 (2027 +)	
Lever	Next year	SHORT TERM	MEDIUM AND LONG TERM	
Strategy and planning	» Establish GH ₂ state management governance » Create state GH ₂ policy with detailed strategic goals	» Establish the ongoing review of the strategy and governance processes associated with GH ₂ , including communication		
Stakeholder coordination	» Establish tools and forums that connect producers and demanders	» Establish bilateral agreements	» Monitor results and review planning and actions between supply and demand	
	» Map infrastructure projects and gaps for renewable energy and GH, production	» Design an infrastructure program for the production and use of GH ₂	» Support and monitor the development and installation of infrastructure projects	
Infrastructure and R&D	» Develop a GH ₂ scientific and technological cooperation program with national and international reference centers	» Create GH ₂ programs and research lines and seek support to make them financially viable	» Evolve innovation and research programs in line with the needs of the chain	
	» Propose systems and processes applicable to environmental licensing and tax treatment related to GH ₂	» Adapt and communicate regulations and structures for licensing the chain	» Licensing and monitoring the performance of the GH ₂ chain in relation to certification and licensing of new GH ₂ businesses	
Regulation	» Analyze and propose GH ₂ certification models that adhere to the RS strategy at national and international level			
	» Define and approve local incentive mechanisms, based on economic and legal impact studies	» Offer, implement and communicate the approved incentives	» Monitor the impact of incentives and adapt as the chain evolves	
Financial and tax incentives	stuits	» Collaborate for the creation of mechanisms at the federal level		
	» Prepare a map of needs and a training plan for professionals demanded by the GH ₂ chain	» Execute training plan with support from the S system and technical schools	» Evolve professional training programs	
Human capital				

Note: The actions mentioned here are a consolidation of the work plans prepared by the government's technical groups, presented in a summarized text format for high-level communication purposes. The "from-to" that allows tracking the consolidation of initiatives is available in the Annex to Product 12 of this study. Detailed action plans for each lever are included in Output 9 of the study and retain the original wording developed by the technical groups.

Designed governance structure

LEVEL	Structure	Objectives	PARTICIPANTS
Estrategic	Directive committee	Establish and monitor the evolution of strategic objectives in the development of the GH_2 chain Define priority areas in the medium and long term Plan how the government will act to achieve the established objectives Delimit the scope of action and reporting structure	Representatives of the State Departments Leader of the GH ₂ Working Group
Tactical	GH_2 Working Group	Establish and monitor the evolution of measurable goals for the strategic objectives Establish and monitor short and medium term programs to achieve the goals Define roles and responsibilities for program execution, reporting and coordination	Leader of the GH ₂ Working Group Initiative delivery manager
Operational	Implementation teams of the levers	Prioritize and manage specific projects and specific actions within the enabling program to achieve economic development objectives Hold forums for decision-making regarding projects and operational actions Monitor the execution and delivery of projects and program actions	Lever implementation leaders Owners of government initiatives

GREEN HYDROGEN

Final considerations

RS has great wind and solar potential for the development of GH₂ projects

Current economy, infrastructure and strategic position for GH_2 projects

Current and projected internal and external demands are adequate for scaled-up developments

GH₂ plays a central role in helping the world achieve carbon neutrality by 2050 and limiting global warming to 1.5°C

GH₂ is key to enabling a decarbonized energy system

Competitive GH₂ production costs in the national and international scenario More information about GH_2 in Rio Grande do Sul:

STATE DEPARTMENT FOR ENVIRONMENT AND INFRASTRUCTURE

h2v@sema.rs.gov.br

estado.rs.gov.br

